文章编号:1236时间:2024-05-28人气:
狭义相对论是如何形容时空笔挺的?笔挺后的时空又是如何偏折光线的?4月21日,2024秋季搜狐视频播主大会开播,搜狐开创人、董事局主席兼首席口头官、物理学博士张背阴在《迷信演讲局》过程带来了一场关于狭义相对论的硬核演讲,演算大质量物体笔挺光线这一奥妙性质。
推导测地线方程,了解笔挺时地面的直线
1919年,爱丁顿派遣两队科考队前往南非和南美,独特观测了一次性日全食。在月亮遮挡太阳光的状况下,太阳左近的昴星团星光得以浮现。经过对比日食时太阳左近的昴星团形态和平时期间观测到的昴星团的形态,爱丁顿团队发现星光在太阳左近出现了弯折,并且弯折角度合乎狭义相对论的预言,从而一举奠定了狭义相对论的正确性位置。
为了了解狭义相对论是如何形容光子的静止的,先了解笔挺时空是怎样回事。在狭义相对论中,球对称的大质量天体左近的真空具备史瓦西度规
其中史瓦西半径
关于太阳而言,这个量大略在3公里。笔挺时地面,测地线方程为
它形容了线上的坐标x^α对线长s的求导所得的切矢是平移不变的。其中α是坐标的目的,α=0代表期间t,α=1代表球坐标的到原点的距离r,α=2代表极角θ,α=3代表方位角φ。
关于有质量粒子而言,这个方程没有疑问,它的时空距离是类时的,全球限线元长度ds与它自身的原期距离dτ有相关:ds²=-c²dτ²。但关于光子而言,它的时空距离恒为零,属于类光距离
这样的量显然不能作为求导的自变量。那么光的测地线方程又该如何定义呢?
为了处置这个疑问,须要再回到测地线方程自身的推导。首先,要形容一条线上某点处的切矢,在不对切矢自身的长度做要求的状况下,只须要取该点临域内恣意两点的坐标作差。这个坐标差,可记为
而假设宿愿切矢长度被归一化,就要再除以这两点间的长度ds。这个长度标量满足
除以这段线元长度后,失掉归一化的切矢F
测地线要求切矢沿着线平行移动,也即协变微分为0
对方程两头再除以ds,就是本节扫尾所写的测地线方程。
但准则上,切矢并不须要按线长归一化,只须要一个标量参数来形容切点在线上的移动就行。这个参数可以和线元长度有关,称为仿射参数,普通记为λ。关于光子而言,它的全球限线元ds=0,这并不是说光在时空图上就不动了,而是由于时空度规含有负值,来自期间的距离和来自空间的距离相对消了。只管ds=0,但总可以结构一个标量λ,让微元dλ不为0,并用它来参数化光的全球限。借助这个仿射参量,就可以结构出实用于光的测地线方程
计算光线的引力偏折角,验证狭义相对论
光线轨迹是距离r和方位角φ之间的函数,期间t作为静止参数将被消掉,而极角θ也曾经被事前选取在了赤道面上。经过一系列推导(详见203期物理课),可以失掉
假设左近没有大质量天体,那么方程右侧的史瓦西半径就等于0,方程就变成
这个方程的解是
即
它是直线在极坐标系下的方程,假设把它写成rsinφ=1/A=r₀,就很容易看出它是距离原点r₀的一条直线。
(张背阴解说无质量笔挺下的直线解)
而在思考了方程右侧有一个非零项后,方程的近似解可以用微扰的方法求出,最后失掉偏折角为
这个结果与爱丁顿在1919年5月29号观测日全食失掉的数据相当吻合。而在经典牛顿引力给出的偏折角仅仅是它的一半,这之间的差异有力地证实了狭义相对论的正确性。在爱丁顿团队发表试验结果后,《纽约时报》当即在头版头条报道了这一信息,爱因斯坦也由此出圈,从物理大咖成为全球名人。
据了解,《张背阴的物理课》于每周周日半夜12时在搜狐视频直播,网友可以在搜狐视频APP关注流中搜查张背阴,观看直播及往期完整视频回放;关注张背阴的物理课账号,检查课程中的常识点短视频;此外,还可以在搜狐资讯APP的搜狐科技账号上,阅览每期物理课程的具体文章。
相对论(Principle of relativity)相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。 相对论的基本假设是光速不变原理,相对性原理和等效原理。 相对论和量子力学是现代物理学的两大基本支柱。 奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。 相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。 相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。 相对论的提出过程除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。 文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。 十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速c传播的电磁波的存在。 到十九世纪末,实验完全证实了麦克斯韦理论。 电磁波是什么?它的传播速度c是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。 但人们发现,这是一个充满矛盾的理论。 如果认为地球是在一个静止的以太中运动,那么根据速度迭加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。 如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。 1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。 对此,洛仑兹()提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。 由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。 爱因斯坦从完全不同的思路研究了这一问题。 他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。 爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。 第一个叫做相对性原理。 它是说:如果坐标系K相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K。 第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。 从表面上看,光速不变似乎与相对性原理冲突。 因为按照经典力学速度的合成法则,对于K和K这两个做相对匀速运动的坐标系,光速应该不一样。 爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。 经典力学中的速度合成法则实际依赖于如下两个假设:1、 两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;2、 两点的空间距离与测量距离所用的尺的运动状态无关。 爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。 这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。 在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。 距离也有了相对性。 如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K坐标系中同一个事件由x、y、z和t来确定,则爱因斯坦发现,x、y、z和t可以通过一组方程由x、y、z和t求出来。 两个坐标系的相对运动速度和光速c是方程的唯一参数。 这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。 利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。 相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x、y、z、t将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。 人们称之为普遍的自然定律对于洛仑兹变换是协变的。 这一点在我们探索普遍的自然定律方面具有非常重要的作用。 此外,在经典物理学中,时间是绝对的。 它一直充当着不同于三个空间坐标的独立角色。 爱因斯坦的相对论把时间与空间联系起来了。 认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。 这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。 在相对论中,用四维方式来考察物理的现实世界是很自然的。 狭义相对论导致的另一个重要的结果是关于质量和能量的关系。 在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。 爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。 他给出了一个著名的质量-能量公式:E=mc2,其中c为光速。 于是质量可以看作是它的能量的量度。 计算表明,微小的质量蕴涵着巨大的能量。 这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。 对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。 旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。 ”对于相对论只字未提。 爱因斯坦于1915年进一步建立起了广义相对论。 狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。 他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。 他进而分析了光线在靠近一个行量附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。 可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。 基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。 利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。 他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。 ”1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。 在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。 第一次世界大战延误了对这个数值的测定。 1919年5月25日的日全食给人们提供了大战后的第一次观测机会。 英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。 11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。 他称赞道“这是人类思想史上最伟大的成就之一。 爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。 ”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。 消息传遍全世界,爱因斯坦成了举世瞩目的名人。 广义相对论也被提高到神话般受人敬仰的宝座。 从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。 但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。 七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。 特别是1974年9月由麻省理工学院的泰勒和他的学生惠斯勒,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。 经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。 由于这一重大贡献,泰勒和惠斯勒获得了1993年诺贝尔物理奖。 狭义相对论马赫和休谟的哲学对爱因斯坦影响很大。 马赫认为时间和空间的量度与物质运动有关。 时空的观念是通过经验形成的。 绝对时空无论依据什么经验也不能把握。 休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。 而时间总是又能够变化的对象的可觉察的变化而发现的。 1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。 而牛顿的绝对时空观念是错误的。 不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。 他用光速不变和相对性原理提出了洛仑兹变换。 创立了狭义相对论。 狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。 在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。 现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。 我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。 四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。 四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。 在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。 在四维时空里,动量和能量实现了统一,称为能量动量四矢。 另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。 值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。 四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。 可以说至少它比牛顿力学要完美的多。 至少由它的完美性,我们不能对它妄加怀疑。 相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。 这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。 在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 狭义相对论基本原理物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。 也就是说,运动必须有一个参考物,这个参考物就是参考系。 伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。 更无从感知速度的大小,因为没有参考。 比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。 爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。 其内容是:惯性系之间完全等价,不可区分。 著名的麦克尔逊•莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。 也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。 这就是狭义相对论的第二个基本原理,光速不变原理。 由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。 比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10-15)m/s左右。 在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0.99倍光速,人的速度也是0.99倍光速,那么地面观测者的结论不是1.98倍光速,而是0.倍光速。 车上的人看到后面的射来的光也没有变慢,对他来说也是光速。 因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。 速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。 正因为光的这一独特性质,因此被选为四维时空的唯一标尺。 狭义相对论效应根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个关性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。 在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。 相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。 可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。 尺子的长度就是在一惯性系中“同时”得到的两个端点的坐标值的差。 由于“同时”的相对性,不同惯性系中测量的长度也不同。 相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。 由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。 也就是说,时间进度与参考系有关。 这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。 比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是“绝对的”。 这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。 也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。 时钟佯谬或双生子佯谬相对论诞生后,曾经有一个令人极感兴趣的疑难问题——双生子佯谬。 一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。 爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。 许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。 如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。 在此只是用语言来描述一种最简单的情形。 不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。 我们的结论是,无论在那个参考系中,B都比A年轻。 为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。 这样处理的目的是略去加速和减速造成的影响。 在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。 在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。 在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。 这是一个“超光速”过程。 只是这种超光速与相对论并不矛盾,这种“超光速”并不能传递任何信息,不是真正意义上的超光速。 如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。 火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。 B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。 在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。 重逢时,自己仍比A年轻。 也就是说,相对论不存在逻辑上的矛盾。 狭义相对论小结相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。 经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。 因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。 狭义相对论建立以后,对物理学起到了巨大的推动作用。 并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。 然而在成功的背后,却有两个遗留下的原则性问题没有解决。 第一个是惯性系所引起的困难。 抛弃了绝对时空后,惯性系成了无法定义的概念。 我们可以说惯性系是惯性定律在其中成立的参考系。 惯性定律实质一个不受外力的物体保持静止或匀速直线运动的状态。 然而“不受外力”是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。 这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。 我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。 第二个是万有引力引起的困难。 万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。 当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意。 爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。 为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。 因此第一个问题转化为非惯性系的时空结构问题。 在非惯性系中遇到的第一只拦路虎就是惯性力。 在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。 几经曲折,爱因斯坦终于建立了完整的广义相对论。 广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。 至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。 它那优美的数学形式至今令物理学家们叹为观止。 就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。 然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。 于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。 直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。 爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。 不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。 目前学术界公认的最有希望的候选者是超弦理论与超膜理论。 广义相对论相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。 这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言“全世界只有十二个人懂相对论”。 甚至有人说“全世界只有两个半人懂相对论”。 更有甚者将相对论与“通灵术”,“招魂术”之类相提并论。 其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。 相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。 相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。 黎曼从更高的角度统一了三种几何,称为黎曼几何。 在非欧几何里,有很多奇怪的结论。 三角形内角和不是180度,圆周率也不是3.14等等。 因此在刚出台时,倍受嘲讽,被认为是最无用的理论。 直到在球面几何中发现了它的应用才受到重视。 空间如果不存在物质,时空是平直的,用欧氏几何就足够了。 比如在狭义相对论中应用的,就是四维伪欧几里得空间。 加一个伪字是因为时间坐标前面还有个虚数单位i。 当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。 相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。 当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。 一般情况下,看到的是个环,被称为爱因斯坦环。 爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。 当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。 于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。 不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。 爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。 在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。 极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。 这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。 就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。 值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。 近年来宇宙项又被重新重视起来了。 黑洞问题将在今后的文章中讨论。 黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。 今后的理论有希望在这里找到突破口。 广义相对论基本原理由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。 其内容是,所有参考系在描述自然定律时都是等效的。 这与狭义相对性原理有很大区别。 在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。 但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。 这就需要我们寻找一种更好的描述方法来适应这种要求。 通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。 因此,普通参考系应该用黎曼几何来描述。 第二个原理是光速不变原理:光速在任意参考系内都是不变的。 它等效于在四维时空中光的时空点是不动的。 当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。 可以说引力可使光线偏折,但不可加速光子。 第三个原理是最著名的等效原理。 质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。 引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。 它们是互不相干的两个定律。 惯性质量不等于电荷,甚至目前为止没有任何关系。 那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。 然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。 广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。 惯性质量联系着惯性力,引力质量与引力相联系。 这样,非惯性系与引力之间也建立了联系。 那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。 由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。 初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。 等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。 由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。 在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。 在黎曼时空中,就是沿着测地线运动。 测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。 比如,球面的测地线是过球心的平面与球面截得的大圆的弧。 但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。 值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。 这样提出是为了解释行星运动。 他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已。 (未完转下)
以下对相对论的解析比较复杂,WSHIRI阁下可以只阅读第一段,因为第一段内容比较概括与简洁,后面的详细解说只供选读。 ---失意的风筝 相对论(Principle of relativity) 相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。 相对论的基本假设是光速不变原理,相对性原理和等效原理。 相对论和量子力学是现代物理学的两大基本支柱。 奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。 相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。 相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。 第一个叫做相对性原理。 它是说:如果坐标系K相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。 第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。 从表面上看,光速不变似乎与相对性原理冲突。 因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。 爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。 爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。 这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。 在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。 距离也有了相对性。 如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。 两个坐标系的相对运动速度和光速c是方程的唯一参数。 这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。 利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。 相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x、y、z、t将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。 人们称之为普遍的自然定律对于洛仑兹变换是协变的。 这一点在我们探索普遍的自然定律方面具有非常重要的作用。 此外,在经典物理学中,时间是绝对的。 它一直充当着不同于三个空间坐标的独立角色。 爱因斯坦的相对论把时间与空间联系起来了。 认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。 这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。 在相对论中,用四维方式来考察物理的现实世界是很自然的。 狭义相对论导致的另一个重要的结果是关于质量和能量的关系。 在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。 爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。 他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。 于是质量可以看作是它的能量的量度。 计算表明,微小的质量蕴涵着巨大的能量。 这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。 爱因斯坦于1915年进一步建立起了广义相对论。 狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。 他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。 他进而分析了光线在靠近一个行量附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。 可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。 【狭义相对论】马赫和休谟的哲学对爱因斯坦影响很大。 马赫认为时间和空间的量度与物质运动有关。 时空的观念是通过经验形成的。 绝对时空无论依据什么经验也不能把握。 休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。 而时间总是又能够变化的对象的可觉察的变化而发现的。 1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。 而牛顿的绝对时空观念是错误的。 不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。 他用光速不变和相对性原理提出了洛仑兹变换。 创立了狭义相对论。 狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。 在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。 现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。 我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。 四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。 四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。 在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。 在四维时空里,动量和能量实现了统一,称为能量动量四矢。 另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。 值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。 四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。 可以说至少它比牛顿力学要完美的多。 至少由它的完美性,我们不能对它妄加怀疑。 相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。 这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。 在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 狭义相对论基本原理 物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。 也就是说,运动必须有一个参考物,这个参考物就是参考系。 伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。 更无从感知速度的大小,因为没有参考。 比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。 爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。 其内容是:惯性系之间完全等价,不可区分。 著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。 也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。 这就是狭义相对论的第二个基本原理,光速不变原理。 由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。 比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。 在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0.99倍光速,人的速度也是0.99倍光速,那么地面观测者的结论不是1.98倍光速,而是0.倍光速。 车上的人看到后面的射来的光也没有变慢,对他来说也是光速。 因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。 速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。 正因为光的这一独特性质,因此被选为四维时空的唯一标尺。 相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。 可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。 由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。 也就是说,时间进度与参考系有关。 这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。 比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是绝对的。 这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。 也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。 时钟佯谬或双生子佯谬 相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。 一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。 爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。 许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。 如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。 在此只是用语言来描述一种最简单的情形。 不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。 我们的结论是,无论在那个参考系中,B都比A年轻。 为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。 这样处理的目的是略去加速和减速造成的影响。 在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。 在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。 在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。 这是一个超光速过程。 只是这种超光速与相对论并不矛盾,这种超光速并不能传递任何信息,不是真正意义上的超光速。 如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。 火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。 B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。 在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。 重逢时,自己仍比A年轻。 也就是说,相对论不存在逻辑上的矛盾。 狭义相对论小结 相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。 经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。 因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。 狭义相对论建立以后,对物理学起到了巨大的推动作用。 并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。 然而在成功的背后,却有两个遗留下的原则性问题没有解决。 第一个是惯性系所引起的困难。 抛弃了绝对时空后,惯性系成了无法定义的概念。 我们可以说惯性系是惯性定律在其中成立的参考系。 惯性定律实质一个不受外力的物体保持静止或匀速直线运动的状态。 然而不受外力是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。 这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。 我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。 第二个是万有引力引起的困难。 万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。 当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意。 爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。 为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。 因此第一个问题转化为非惯性系的时空结构问题。 在非惯性系中遇到的第一只拦路虎就是惯性力。 在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。 几经曲折,爱因斯坦终于建立了完整的广义相对论。 广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。 至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。 它那优美的数学形式至今令物理学家们叹为观止。 就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。 然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。 于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。 直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。 爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。 不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。 目前学术界公认的最有希望的候选者是超弦理论与超膜理论。 【广义相对论】相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。 这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言全世界只有十二个人懂相对论。 甚至有人说全世界只有两个半人懂相对论。 更有甚者将相对论与通灵术,招魂术之类相提并论。 其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。 相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。 相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。 黎曼从更高的角度统一了三种几何,称为黎曼几何。 在非欧几何里,有很多奇怪的结论。 三角形内角和不是180度,圆周率也不是3.14等等。 因此在刚出台时,倍受嘲讽,被认为是最无用的理论。 直到在球面几何中发现了它的应用才受到重视。 空间如果不存在物质,时空是平直的,用欧氏几何就足够了。 比如在狭义相对论中应用的,就是四维伪欧几里得空间。 加一个伪字是因为时间坐标前面还有个虚数单位i。 当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。 相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。 当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。 一般情况下,看到的是个环,被称为爱因斯坦环。 爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。 当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。 于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。 不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。 爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。 在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。 极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。 这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。 就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。 值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。 近年来宇宙项又被重新重视起来了。 黑洞问题将在今后的文章中讨论。 黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。 今后的理论有希望在这里找到突破口。 广义相对论基本原理 由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。 其内容是,所有参考系在描述自然定律时都是等效的。 这与狭义相对性原理有很大区别。 在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。 但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。 这就需要我们寻找一种更好的描述方法来适应这种要求。 通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。 因此,普通参考系应该用黎曼几何来描述。 第二个原理是光速不变原理:光速在任意参考系内都是不变的。 它等效于在四维时空中光的时空点是不动的。 当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。 可以说引力可使光线偏折,但不可加速光子。 第三个原理是最著名的等效原理。 质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。 引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。 它们是互不相干的两个定律。 惯性质量不等于电荷,甚至目前为止没有任何关系。 那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。 然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。 广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。 惯性质量联系着惯性力,引力质量与引力相联系。 这样,非惯性系与引力之间也建立了联系。 那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。 由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。 初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。 等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。 由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。 在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。 在黎曼时空中,就是沿着测地线运动。 测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。 比如,球面的测地线是过球心的平面与球面截得的大圆的弧。 但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。 值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。 这样提出是为了解释行星运动。 他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已。 蚂蚁与蜜蜂的几何学 设想有一种生活在二维面上的扁平蚂蚁,因为是二维生物,所以没有第三维感觉。 如果蚂蚁生活在大平面上,就从实践中创立欧氏几何。 如果它生活在一个球面上,就会创立一种三角和大于180度,圆周率小于3.14的球面几何学。 但是,如果蚂蚁生活在一个很大的球面上,当它的科学还不够发达,活动范围还不够大,它不足以发现球面的弯曲,它生活的小块球面近似于平面,因此它将先创立欧氏几何学。 当它的科学技术发展起来时,它会发现三角和大于180度,圆周率小于3.14等实验事实。 如果蚂蚁够聪明,它会得到结论,它们的宇宙是一个弯曲的二维空间,当它把自己的宇宙测量遍了时,会得出结论,它们的宇宙是封闭的(绕一圈还会回到原地),有限的,而且由于空间(曲面)的弯曲程度(曲率)处处相同,它们会将宇宙与自己的宇宙中的圆类比起来,认为宇宙是圆形的。 由于没有第三维感觉,所以它无法想象,它们的宇宙是怎样弯曲成一个球的,更无法想象它们这个无边无际的宇宙是存在于一个三维平直空间中的有限面积的球面。 它们很难回答宇宙外面是什么这类问题。 因为,它们的宇宙是有限无边的封闭的二维空间,很难形成外面这一概念。 对于蚂蚁必须借助发达的科技才能发现的抽象的事实,一只蜜蜂却可以很容易凭直观形象的描述出来。 因为蜜蜂是三维空间的生物,对于嵌在三维空间的二维曲面是一目了然的,也很容易形成球面的概念。 蚂蚁凭借自己的科学技术得到了同样的结论,却很不形象,是严格数学化的。 由此可见,并不是只有高维空间的生物才能发现低维空间的情况,聪明的蚂蚁一样可以发现球面的弯曲,并最终建立起完善的球面几何学,其认识深度并不比蜜蜂差多少。 黎曼几何是一个庞大的几何公理体系,专门用于研究弯曲空间的各种性质。 球面几何只是它极小的一个分支。 它不仅可用于研究球面,椭圆面,双曲面等二维曲面,还可用于高维弯曲空间的研究。 它是广义相对论最重要的数学工具。 黎曼在建立黎曼几何时曾预言,真实的宇宙可能是弯曲的,物质的存在就是空间弯曲的原因。 这实际上就是广义相对论的核心内容。 只是当时黎曼没有像爱因斯坦那样丰富的物理学知识,因此无法建立广义相对论。 广义相对论的实验验证 爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。 直到最近才增加了第四个验证:(4)雷达回波的时间延迟。 (1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。 也就是说离天体越近,时间越慢。 这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移。 宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论语言一致。 60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。 5M产生的红移,结果与相对论预言一致。 (2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的量子论加牛顿引力论的混合产物,用普朗克公式E=hr和质能公式E=MC^2求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍。 1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内。 引起误差的主要原因是太阳大气对光线的偏折。 最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会。 精密测量进一步证实了相对论的结论。 (3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。 广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。 (4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。
相对论分为广义相对论和狭义相对论 广义相对论的基本概念解释: 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。 这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。 因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。 假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。 而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。 它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。 这就相当于因时空弯曲物体沿短程线的运动。 所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。 等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。 所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。 这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。 以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。 60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。 特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。 但是我认为,广义相对论不一样。 ”确实,广义相对论比狭义相对论包含了更加深刻的思想,这一全新的引力理论至今仍是一个最美好的引力理论。 没有大胆的革新精神和不屈不挠的毅力,没有敏锐的理论直觉能力和坚实的数学基础,是不可能建立起广义相对论的。 伟大的科学家汤姆逊曾经把广义相对论称作为人类历史上最伟大的成就之一。 狭义相对论就是 狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。 在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。 现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。 一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。 四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。 四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。 在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。 在四维时空里,动量和能量实现了统一,称为能量动量四矢。 另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。 值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。 四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。 可以说至少它比牛顿力学要完美的多。 至少由它的完美性,我们不能对它妄加怀疑。 相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。 这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。 在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。 也就是说,运动必须有一个参考物,这个参考物就是参考系。 伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。 更无从感知速度的大小,因为没有参考。 比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。 爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。 其内容是:惯性系之间完全等价,不可区分。 著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。 也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。 这就是狭义相对论的第二个基本原理,光速不变原理。 由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。 比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。 在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。 99倍光速,人的速度也是0。 99倍光速,那么地面观测者的结论不是1。 98倍光速,而是0。 倍光速。 车上的人看到后面的射来的光也没有变慢,对他来说也是光速。 因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。 速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。 正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
上一篇:逃税302亿美元非洲手机之王回应
内容声明:
1、本站收录的内容来源于大数据收集,版权归原网站所有!
2、本站收录的内容若侵害到您的利益,请联系我们进行删除处理!
3、本站不接受违法信息,如您发现违法内容,请联系我们进行举报处理!
4、本文地址:https://link.52hwl.com/article/3aa606d655c36b5e393b.html,复制请保留版权链接!
1、打开地址点右侧边百度内打开跳转到百度APP参与(链接领会提示火爆)-看20秒视频-点领通兑券 2、领成功后去我的-卡券包点击使用-不会显示抵扣-点确认支付才会显示抵扣-如图4-有效期3天! 活动地址: https://5bnfgx.smartapps.cn/homes/activity_qixi/activity_qixi 活动时间:2021.6.15结束
2021-06-09 17:55:14
限懒人听书新用户参与! 包含懒人畅听15天、QQ音乐、酷狗音乐、酷我音乐各7天!打开地址领取后下载跳转到懒人畅听APP全部领取即可立马到! 活动地址: https://m.lrts.me/activity/promote/new 活动时间:2021.6.30结束
2021-05-31 11:04:16
自从知道了地球只是太阳的一颗行星之后,天文学家开始猜测,宇宙中其他的恒星应该也有自己的行星,这种猜测在1995年首次得到了证实,这一年里,天文学家在飞马座方向、距离我们大约51光年的位置上,发现了一颗围绕着恒星运行的行星——飞马座51b,51Pegasib,在接下来的日子里,随着观测水平的日益提升,又有更多的系外行星陆续被发现,迄今...。
2024-05-29 03:54:47
2月2日,智利瓦尔帕莱索大区发生了一起灾难性的火灾,造成至少137人丧生,16000人无家可归,这场火灾是智利历史上伤亡人数最高的一次,也是自2010年8.8级大地震以来该国面临的最严重灾难之一,据报道,火灾始于佩纽埃拉斯国家森林保护区,当时的天气炎热异常,高温、低湿度和强风使得当局尽最大努力仍无法控制火势,火势迅速蔓延至维尼亚德尔马...。
2024-05-29 01:16:10
特斯拉最近真不是很不太平,又是滞销,又是裁员,股价一路向下狂奔,一幅气味奄奄的样子,马老板也专门来了趟中国,左谈谈右谈谈,把得力助手朱晓彤带回了国际,还说要搞定FSD,不过,这FSD来不来不好说,特斯拉反倒先在上海搞了波大的,那个拖了一整年的特斯拉上海储能工厂终于开工了!一贯不怎样营销的特斯拉,还特地在官方群众号给大家引见了这个储能工...。
2024-05-28 14:12:41
关键词排名优化详细分析,要在搜索引擎上将关键词排到首页,需要进行大量工作,要选择适合的关键词,要制定该关键词的长尾关键词,接着,需要进行站外推广,选择在大平台发布关于关键词的内容,在选择关键词时,应考虑搜索指数、竞争难易度和搜索量等因素,理想的关键词应该具备搜索量大、竞争小的特点,为了让关键词有排名,首先应该做好该关键词的长尾关键词,...。
2024-03-29 16:57:26
两会中国经济问答丨如何看待当前中国引资态势和未来前景,——两会中国经济问答之八近段时间,我国吸收外资有所下降,一些外媒便借此炒作外资撤离中国不可投资中国投资环境恶化,渲染在华投资风险,唱衰中国经济,事实果真如此吗,如何看待当前中国引资态势和未来前景,全国两会期间,新华社记者就此采访了代表委员和权威部门相关负责人,并同跨国公司和商协会负...。
2024-03-11 19:44:57
利用安卓系统开发实现热更新的最新技术探索最近,许多开发者开始探索利用安卓系统开发实现热更新的最新技术,热更新指的是在不需要重新安装应用程序的情况下,通过网络下载更新内容并应用到应用程序中,这个技术的出现大大简化了软件更新的流程,为用户提供了更好的体验,在安卓系统中,实现热更新有多种方法,其中最为流行的是利用插件化技术,插件化技术允许应...。
2024-02-18 23:34:27
据美国有线电视新闻网,CNN,报道,美国总统拜登在TikTok平台上首次亮相竞选活动后,白宫当地时间12日表示,美国政府长期以来对TikTok的安全担忧没有改变,拜登竞选团队在TikTok上运营一个账户,名为TeamBiden,Harris,并将定期发布内容,与在Instagram等其他社交媒体上一样,他们在TikTok上发布了第一段...。
2024-02-13 13:41:27
北京时间2月13日18,00,2023,2024赛季亚冠联赛淘汰赛阶段的比赛正式开始,山东泰山在主场迎战川崎前锋,作为两回合赛制的首回合比赛,这场比赛对泰山队来说具有重要性,此次比赛正值新春佳节,如果泰山队能够在主场击败对手,将成为球迷们的新春大礼,同时,泰山队在次回合比赛中也将建立起理想的心理优势,要实现这一目标并不容易,赛前,山东...。
2024-02-13 12:48:39
AI技术正在不断革新,为传统习俗带来了全新的玩法,随着春节的临近,顺网科技旗下的唠唠推出了一项名为,抢福神分红包AI拜年,的活动,该活动在半日内就吸引了超过10000人参与,展现出极强的用户吸引力,据顺网科技介绍,本次活动借助AI技术,让福神们能够跨越虚拟与现实的界限,为大家送上祝福,给新年增添更多的欢乐和新意,同时也炒热了新年的气氛...。
2024-02-13 12:10:37